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Abstract: This paper presents a systematic analysis of the problem of
multiple scattering by a finite group of arbitrarily sized, shaped, and
oriented particles embedded in an absorbing, homogeneous, isotropic, and
unbounded medium. The volume integral equation is used to derive
generalized Foldy—Lax equations and their order-of-scattering form. The
far-field version of the Foldy—Lax equations is used to derive the transport
equation for the so-called coherent field generated by a large group of
sparsely, randomly, and uniformly distributed particles. The differences
between the generalized equations and their counterparts describing
multiple scattering by particles embedded in a non-absorbing medium are
highlighted and discussed.
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1. Introduction

Multiple scattering of electromagnetic waves by particles is an important discipline which has
been the subject of numerous publications over the past few decades (see, eg., [1-7] and
references therein). The conventional theories of multiple scattering have explicitly relied on
the assumption that the host medium surrounding the particles is non-absorbing. The
important general case of an absorbing host medium has largely been ignored, a paper by
Yang et al. [8] and two recent papers by Durant et al. [6, 9] being rare exceptions.

The objective of this series of papersisto perform a systematic analysis of the problem of
multiple scattering by particles imbedded in an absorbing host medium by generalizing the
results summarized in [3, 7]. The reguisite study of the problem of single scattering has
recently been published [10] (see Appendix below for errata). Likein [10], my goal hereisto
perform as general an analysis as possible without providing a detailed microphysical
specification of the scattering particles. In particular, the particles are alowed to have
arbitrary sizes, shapes, and orientations.

Inthisfirst part of the series, the focus is on such fundamental ingredients of the multiple-
scattering theory as the vector Foldy—Lax equations, their order-of-scattering form, and the
average (coherent) field. In order to save space and minimize redundancy, | assume that the
reader has access to [ 3, 10] and use the same terminology and notation.

2. Vector Foldy-L ax equations

Consider electromagnetic scattering by a fixed group of N finite particles collectively
occupying the interior region

N
Vint = iL=JlVi’ 1)

where V; is the volume occupied by the ith particle (Fig. 1). The host medium can be
absorbing, but otherwise it is assumed to be infinite, homogeneous, linear, and isotropic. The
particles are assumed to have the same constant permeability, but are alowed to have
different and spatially varying permittivities. The general volume integral equation describing
thetotal electric field everywhere in space[10] can be re-written in the following form:

E(r) = E™(r) + j

dr'G(r,r’)-ECHUE),  reR® 2
9{3

where E™(r) istheincident field, the integration is performed over the entire space,

) ( ; 4

» Observation
point

JN No1

Fig. 1. Scattering by afixed group of N finite particles.
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exp(ikylr —r’))
4z|r =1’

&(r,r) = {i’ + k—12V®V] 3)

is the dyadic Green's function, k,= K;+ ik] is the (complex) wave number of the host

medium, | istheidentity dyadic,
N
ur) =y Uir), re®R® 4

is the potential function, and U;(r) istheith-particle potential function. The latter is given by

0, reV,
U‘(”z{kf[mf(r)—ﬂ, Fev, ©

where m;(r) = k2i(r)/kl is the refractive index of particle i relative to that of the host
medium. Importantly, all position vectors originate at the origin O of the laboratory
coordinate system, Fig. 1.

By following step-by-step the derivation outlined in Section 4.1 of [3], it is straightforward
to show that the solution of Eq. (2) can be expressed as

N
E(r) = E™() + 2 jdr’é(r,r’). Jdr”ﬁ(r’,r”).Ei(r”), re %, (6)
i=1 M M
where the electric field E;(r) exciting particlei is given by
N
E(r) = E™(0) + ) EF0), (7)

the E;“(r) are partial exciting fields given by

ESS(r) = j
V,

and T; isthe solution of the integral equation

dr'G(r,r’)- j dr’ T r") Ei(r7),  reV, (8)
A

J

T, r) = U008 —r")T + Ui(r) J.dr”é(r, )T ), eV 9)

and thus the ith-particle dyadic transition operator with respect to the laboratory coordinate
system.

Equations (6)—8) do not differ mathematically from Egs. (4.1.6)—4.1.8) of [3] derived for
the case of a non-absorbing host medium. They represent the generalized vector form of the
Foldy—Lax equations (FLEs) and describe rigorously electromagnetic scattering by the fixed
group of N particles embedded in an absorbing medium. A fundamental property of the FLES
isthat T; isthe dyadic transition operator of particlei in the absence of all the other particles
(cf. EQ. (9) above and Eqg. (10) in [10]).

3. Multiple scattering

In general, the FLEs (6)—9) are equivalent to Egs. (9) and (10) of [10]. However, the fact that
T for each i is an individual property of the ith particle computed as if this particle were
alone alows one to introduce the mathematical concept of multiple scattering. Let us rewrite
Egs. (6)—(8) in a compact operator form:
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Fig. 2. Diagrammatic representation of Eg. (14).

E = Einc+ é-ﬁ E, (10)
N
E=E™+ GT,E;, (11)
where
6iE = [ wraery [ ot e, (12)
vV, Vi

i

Iterating Eq. (11) gives

N N N
E = E™+ 3 GTE™+ 3 GTGTE™+ 3 GTGNGHE™ + - (139

i) =1 j(#)=1 j(#i) =
I(+])=1 I(]) =1
m) =1

whereas the substitution of Eq. (13) in Eq. (10) results in the order-of -scattering expansion of
the total electric field:

N N
E=E+ ZG'I}E"‘C + GTGTE™ + z GTGT,GTE™ + ...  (14)

The firgt term on the right-hand side of Eq. (14) represents the unscattered incident field, the
second term is the sum of all “single-scattering” contributions, the third term is the sum of all
“double-scattering” contributions, etc. The order-of-scattering interpretation of Eq. (14) is
illustrated in Fig. 2. The arrows denote the incident field, the symbol —e represents the
“multiplication” of a field by a GT dyadic according to Eq. (12), and the dashed curve
indicates that both “ scattering centers’ are represented by the same particle.

Equation (14) constitutes a very clear and fruitful way of re-writing the original FLEs. It
is important to remember, however, that the concept of multiple scattering does not represent
an actual time-sequential process in the framework of frequency-domain electromagnetics[7].

The mathematical structure of Eq. (14) is exactly the same as that in the case of a hon-
absorbing host medium [7], except now the wave number of the host medium is allowed to be
complex-valued.
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(a)

Observation
point

(b)

X

Fig. 3. Scattering by widely separated particles. The local origins O; and O; are chosen
arbitrarily inside particlesi and j, respectively.

4. Far-field Flody-L ax equations

Let us now make the following two simplifying assumptions:

e Each particle from the group is located in the far-field zones of al the other particles.
e The observation point is located in the far-field zone of any particle from the group.

Let us also chose for each particle an individual local origin positioned close to the particle’s
geometrical center, Fig. 3(a). Comparison with Eq. (9) of [10] shows that the right-hand side
of Eq. (8) is the field scattered by particle j in response to the incident field represented by
E;(r). Since the resulting scattered field at any point is independent of the choice of
coordinate system, it is convenient to evaluate the right-hand side of Eq. (8) in the far-field
zone of particle j using the local coordinate system centered a O;. This means that now the
dyadic Green’s function, the dyadic transition operator, and the incident field E; are specified
with respect to the jth local particle coordinate system. According to Section 3 of [10], the
result of scattering is an outgoing spherical wavelet centered at O;:

EF“(r)

u

G(r;) Ey; (F}) (15)

u

eXp(—i leAQij . R|)E|J eXp(I klliij . r), r E\/i, (16)
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where

o) = ZPUkar) ar), (17)
r

Ej = G(Ry)Ey; (éij)v E;- éij =0, (18)

N I’J- ~ R”
f=t R =i 19
T I TR, (19)

- = Ir - Ri|2

rj:lRij+r—Ri|~Rij+Rij'(r—Ri)+T, (20)

1)
andthevectorsr, r;, R;, R;, and R;; areshownin Fig. 3(a). Note that we use a caret above
avector to denote a unit vector in the corresponding direction.

It israther obvious that E;; in Eq. (16) is the value of the exciting field caused by particle j
at the origin of particlei. Since the radius of curvature of the exciting wavelet generated by
particle j is much greater than the size of particle i, Egs. (7) and (16) show that each particleis
excited by the external incident field and the superposition of locally plane homogeneous
waves with amplitudes exp(-ik;R;; - R;) Ej; and propagation directions R;;:

N
Ei(r) = Erexpik,A™ 1) + 2 exp(-ik; Ry - R)Ejexp(ik Ry 1), reVi, (21)
(i) =1

where we assume, as usua, that E™(r) is a homogeneous plane electromagnetic wave
propagating in the direction of the unit vector A™:

E™(r) = Efexp(ik,A™ 1),  Ef°-A™ = 0. (22)

According to Egs. (16) and (19) of [10], the outgoing spherical wave generated by the jth
particle in response to a plane-wave excitation of the form Eg°exp(ik;A™ -r;) is given by
G(ry) A}, A"™) - Eg°, where r; originates a O;, E{° is the incident fleld a O;, and
A (r n'm) is the jth particle scattering dyadic centered at O;. To make use of thlsfact we
rewrlte Eq. (21) for particle j with respect to the jth-particle coordlnate system centered at O;,
Fig. 3(a). Sincer =r; +R;, weobtain

E() =~ E™(R;)explik,i™ -r}) + 2 E exp(ikR; 1)), rev, (23)
1)) =1

Theelectricfield at O caused by particle in response to this excitation is given by

GR)A R, A™)-E™R) + GR) Y ARy R;)-Ej. (24)
I(=j)=1

By equating Eq. (24) with the right-hand side of Eq. (16) corresponding to r = R;, we finally
obtain a system of linear algebraic equations for the partial exciting fields Ej;:

N
E; = G(R)A(R;,A"™)-E™(R,) + G(R;) 2 ARy R)-Ej, 1, j=L1.,N, j=i
I(zj)=1
(25)
Obvioudly, this system is much simpler than the original integral FLES.

The solution of the system (25) yields the electric field exciting each particle as well asthe
total field. Indeed, we have from Eq. (21) for apoint r”eV.:
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N

E(r”) = E™(R;)exp(ik,A™ 1) + 2 Ej exp(iklﬁij 17) (26)

i#)=1

[see Fig. 3(b)], which is a vector superposition of locally plane homogeneous waves.
Substituting this formula in Egq. (6) and recalling the expression for the far-field
electromagnetic response of a particle to a plane-wave excitation yields the total electric field:

N N
E(r) = E™() +2 GI)AFLA™)-E™(R) + D GH) Y. AG.R)-Ej  (2D)

i=1 je) =1

where the observation point r, Fig. 3(b), islocated in the far-field zone of any particle forming
the group.

The expression for the order-of-scattering expansion of the total field also becomes much
simpler under the assumption of far-field scattering. Indeed, iterating Eqg. (25) and
substituting the result in Eq. (27) yields

N

E:Eim+i§,io-Egm 2 i ér Bjo E'm Z 2 2 ér Bn'éﬂo‘E:m
i=1 i=1]j

i=1 j(z)=11(=))=1

4o (28)
where

E = E@r), E™ = E™(r), E™ = E™(R)), (29)
ério = G(ri);&i(fi!ﬁim)i (30)
By = Gr) AR, Ry), (31)
Bjo = G(Ru)A (Rm Alm)v (32)
Eu = G(Rij)Aj(Rij: Rn)- (33)

The diagrammatic formula shown in Fig. 2 can also represent equation (28) provided that the
symbol —e isnow interpreted as the multiplication of afield by a B dyadic.

Neither the derivation of Egs. (25), (27), and (28) nor their formal mathematical structure
differ from those in the case of a non-absorbing host medium [3].

5. The Twersky approximation

Let us consider electromagnetic scattering by a large group of N particles sparsely distributed
throughout afinite macroscopic volume V, Fig. 4. Assuming that N is very large, we can keep
in the far-field order-of-scattering expansion (28) only the terms corresponding to scattering
paths going through a particle only once (so-called self—avoiding paths) [11]:

N N
E=~E™+ Z Bio- E™ + ZZ Bi-Bjo-E[° + 2 2 By By - Bjo- E™
i=1

i=1j=1 i=1 j=11=1
J#i J#i 20

+oen (34)

Thisformularepresents the far-field Twersky approximation and is depicted diagrammatically
in Fig. 5. Comparison with Fig. 2 illustrates the types of diagrams neglected in the Twersky
expansion.
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Fig. 4. Electromagnetic scattering by a large group of particles sparsely distributed
throughout a macroscopic volume V.

6. Coherent field

Let us now assume that the N particles are randomly moving and decompose the field E(r) at
aninternal point r € V into the average (or coherent), E(r), and fluctuating, E;(r), parts:

E(r) = E.(r) + E(r). (35)

Assuming also the full ergodicity of the particle ensemble and replacing time averaging by
averaging over particle positions (subscript R) and states (subscript &), we have

Ec(r) = B = ECDre (36)

B = E(Pre = 0, (37)

where 0 is a zero vector. Furthermore, if all particles have the same statistical characteristics

and the state and coordinates of each particle are independent of each other then we have from
Eq. (34):

N

N N
Eo= E™+ 3 (Bio EMes + 3 By -Bio B
i=1 j=1
J#i

i=1j

Er)=+«+) —0¢ + 3% —0o—0c + YV —o o0«

+YVYYY —o—o—o 0 .-

Fig. 5. Diagrammetic representation of the Twersky expansion.
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jil I§j|o' E:m>R,§ + -

+
M=
NIE
m
flov

N
=E"™ + 2 IdRidgi Pr(Ri)p:(&) ério' E:m

i=1

‘ 2 I R, 06 OR 0 P(R)P: () (R ) Pe(&)) By - Bro E

N
i=1
N

+Z

i=1

ﬂH
—I—‘

deida AR, 02, IR, 62 Pr(R1) (&) Pr(R))

Mz
NE

# I
=

%0
——

pr(sl)pR(R|)p¢(€|)BnJ Bm J|O E|
+ (38)

where pr(R) and p:(&) are the corresponding probability density functions, and the spatial
integrations are performed over the entire volume V. Substituting Egs. (30)—33) yields

N
E= B+ 3 | dRpe(RO G AG, 7 EP
i-1 *V

N

+ j dR;dR | p=(R}) pr(R;) G(r) G(Ry) (A, Ry - (AR, A™)), - E'™
n \%

I
,_‘

N
2 J-dRidede pR(Ri)pR(Rj)pR(RI)G(ri)G(Rij)G(le)<'K(fi: éij»g

M- 1
iM=71M

Il
[

j=1
j#i

ot
——

(AR, R e (AR, A™)), - E™
. @)

where (A(, f)); is the average of the single-particle scattering dyadic over the particle
states. Taking into account that pr(R) = no(R)/N, where ny(R) is the number of particles
per unit volume, we finaly derivein the limit N — oo:

E. = E™+ JdRino(Ri)G(rixA(fuAlm»f E™
v

N >
s f AR, 0R, (R No(R ) G(1) G(R,) (A, Ry - (AR, A, - EM®
\Y%
+ J-dRidedRInO(Ri)nO(Rj)nO(RI)G(ri)G(Rij)G(RjI)
\%

X (AFs R - (AR, Ry )Y - (AR, ™)), - B
. (40)
Let us now assume that the distribution of the particles throughout the volume V is
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Observation
point g

Fig. 6. Computation of the coherent field.

statistically uniform and introduce an s-axis parallel to the incidence direction and going
through the observation point. This axis enters the volume V at a point A such that s(A) =0
and exitsit at apoint B (Fig. 6). Let us evaluate the first integral on the right-hand side of Eqg.

(40):
l1=ng I dR; G(r; (A, ﬁim))_g B
v
(41)

= 1y f dR; expik,A™ - R’i)%w@“@ﬁ A - E™(r),
\V i

where ny = N/VV. The observation point is assumed to be in the far-field zone of any particle,
which allows the use of the Saxon asymptotic expansion of aplane wave in spherical waves:

= exp(-kjAi™ - R)) ;,ZF’Z, [3(A"™ + R))exp(-ik; R) — 3(A"™ — R)exp(ik; R)].
> 1R
(42)

"1, Ainc ’
exp(ikn™ - R}) .
It is convenient to evaluate the integral (41) using a spherical polar coordinate system with
origin at the observation point and with the z-axis directed along the s-axis. This gives

i2
|1: k

o j oR; j AR (AR, ™)), - E™()[8("™ + R() - (1™ — R) exp(2ik, R)]
1 %4
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|2;rn0

— d )(A(nlm "Im)>§ EII’K)

II"K: " |m)>§ Elm(r)

(43)

Notice now that the boundaries of the scattering volume V are not perfectly fixed and can be
expected to fluctuate during the time interval necessary to compute the coherent field
according to Eq. (36). Averaging over these fluctuations does not affect the first term on the
right-hand side of Eq. (43), but effectively extinguishes the second term proportiona to the
rapidly oscillating exponential exp{i2k,[s(B)—s(r)]}. Taking the average of the coherent
field over a small volume element centered at the observation point r would have the same
effect. Hence,
|27rn0

Iy = S(r) (AQA™, ™)), - E™(r). (44)

Analogously, since R =r + Ri +R i, we have for the second integral on the right-hand

side of Eq. (40):

i

I, =n? j dR R?G(R) J. dR; I dR; RZG(R;) I dR;
4z A

X (AR}, ~R;)): - (AR, i™)), - E'™, (45)
where

E |jnc

. 2
2[% J PRI - RNIBA™ + RN exp(-ikiR) 3™ — ) explk; R)]

X Rlexp(_ki’ﬁlm . R“)[S(ﬁmc + R“)exp( IklR“) — S(A'm — ﬁ]l)exp(l k;R”)] Eim(l’).
ji

(46)
This means that only particles with origins on the s-axis contributeto 1,. Consequently,
2
I = 2{' "o s(r)} CAGI™, A, - (AE™, A™), - E™(r). (47)
The computation of the remaining integralsin Eq. (40) is quite similar. We thusfinally have:
i2rn NS -
Ed(r) = exp{ 7 SET) A, '%} E™(r). (48)
1
Since r = rp + S(r)A™ (Fig. 6), Eq. (48) yeilds
Ec(r) = expli(i™)s(r)]- E™(r) (49)
or
Ec(9) = ii("™, 9) Ec(s=0), (50)
where

RE™) = kal + <A(“”“ A™)); (51)
is the dyadic propagation constant,

i"™,9) = expliE(™)s] (52)
is the coherent transmission dyadic, and E.(s=0) = E™(r,) is the boundary value of the
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coherent field. Another form of EqQ. (48) is
Ll i) £ (59)
S
It is quite obvious that the coherent field is transverse: E.(r)-A™ = 0. Therefore, the

electric vector of the coherent field can be written as the vector sum of the corresponding 6-
and ¢-components in the local coordinate system centered at the observation point:

E(r) = Ex0)0@™) + E,(NE™), /™ = 6(™) x $@"™). (54)
Introducing the two-component electric column vector of the coherent field according to
Ex(r)
E.(r) = , 55
(r) {Ew(r)} (55)
we have
L ik@mE) (56)
where k(A'™) isthe 2x 2 matrix propagation constant with elements
k(™) = ™) - &(@™) - 6F™), (57)
k(™) = 8F"™) - (™) - §A™), (58)
k(™) = ™) - (™) - 6(A™), (59)
k(™) = (A"™) - (H™) - E™). (60)
Thisimplies that
K@A™) = kl[(l) ﬂ + 2’;?0 (S(A™, A™Y).. (61)

where (S(A™, ﬁ”‘))i is the forward-scattering amplitude matrix averaged over the particle
states.
Equation (56) can be re-written as

E.(s) = h(Ai™, 9 E,(s=0), (62)
where
h({A™, s) = expli sk(i"™)] (63)

isthe 2x2 coherent transmission amplitude matrix. The reciprocity relations (79) and (80)
of [10] imply the following reciprocity relations for the coherent transmission dyadic and the
coherent transmission amplitude matrix:

=", 9) = [i@"™, 9", (64)

h(-A™, §) = [(1) _()J[h(ﬁ‘m, s)]TLl) _OJ, (65)

where T denotes the transpose of a dyadic or a matrix.
7. Transfer equation for the coherent field

We will now switch to potentially observable quantities having the dimension of
monochromatic energy flux. The coherency column vector of the coherent field is defined as

#91716 - $15.00 USD Received 14 Jan 2008; revised 24 Jan 2008; accepted 29 Jan 2008; published 1 Feb 2008
(C) 2008 OSA 4 February 2008/ Val. 16, No. 3/ OPTICS EXPRESS 2299



Eo Eco

J. = Re[i] EwEW’ , (66)
20y )| BEoy By
Eep oy

where @ isthe angular frequency and p, isthe permesbility of the host medium. As follows
from Egs. (56) and (61), J. satisfiesthe transfer equation

—dJJfr) = = 2KL3(r) - rolK (™) (), (67)

where K is the coherency extinction matrix given by Eq. (68) of [10]. In the Stokes-vector
representation,

S
I, =DJ, = Re[ K ] For B —Eep By (68)
201 )|~ 2 Re(Ex E3,)
21m(Ey E;,)

and
L0 2410 - oK@ 0, (%9)

where

and K is the Stokes extinction matrix given by Egs. (71)—(78) of [10]. The formal solution of
Eq. (69) is given by

() = HIA™, S(r)]1.(r o), (70)
where
HE™, 9) = expl-2K{s— nosK(A™),] (72)
isthe 4x4 coherent transmission Stokes matrix. Equation (82) of [10] implies the following
reciprocity relation:
H-A™,9) = Ag[HA™, 9)]"A,, (72)
where A; = diag[1, 1 -11].

8. Discussion

The results of Sections 6 and 7 generaize the Foldy approximation [12] to the case of
electromagnetic scattering by particles imbedded in an absorbing host medium. Unlikein [6],
our results are applicable to particles of any size, shape, orientation, and polydispersity.
Although the vector Foldy-Lax equations (Section 2) and their order-of-scattering
expansion (Section 3) as well as their far-field versions (Section 4) fully preserve their
original mathematical structure, a non-vanishing absorptivity of the host medium leads to
explicit changes in formulas of Sections 6 and 7. Specifically, Egs. (48), (51), and (61) differ
from their counterpartsin [3] in that k; is replaced by ki. Furthermore, Egs. (67), (69), and
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(71) contain additional, intuitively obvious terms which are proportional to ki and describe
additional exponential attenuation due to true absorption of electromagnetic energy by the
host medium. Importantly, these results have been derived directly from the Maxwell
equations and involve no phenomenological assumptions or hypotheses.

Equation (71) shows that the effect of a non-zero ki on the coherent propagation of an
electromagnetic wave through a turbid medium is two-fold. First, it modifies the numerical
values of the ensemble-averaged extinction matrix elements. Second, it causes an additional
exponential-attenuation factor exp(—2k{s). Thereis no doubt that the second manifestation of
a non-vanishing absorptivity of the host medium is much more important than the first one
since it affects directly the long-range transport of electromagnetic energy.

An essentia ingredient of our derivation has been the explicit representation of
exponentials of the type exp(ika) (with a real-valued o) as a product of a real-valued
exponential exp(~kia) and a “purely complex” exponential exp(ikic) with a real-valued
Kia. It is important to remember that mathematical results such as the Jones lemma, the
method of stationary phase, or the Saxon expansion of a plane wave in spherical waves[3, 13]
are gpplicable only to situations involving purely complex exponentials of the type exp(i k)
with a real-valued kia. We note in this regard that Eq. (61), when applied to the case of
spherical particles, appears to be inconsistent with Eq. (55) of [6] in that the denominator in
the second term of the former contains k; rather than k;. Although the origin of this
discrepancy is not immediately obvious, it is likely to be the same as that of the discrepancy
discussed in the penultimate paragraph of [10].
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Appendix

Two typos have been identified in [10]. First, “independence” on the 5" line following Eq.
(38) should read “dependence’. Second, Eq. (64) should read

exp(-2K/r)

Signal 2 = SI®*(ri*®) = S y Z(A%?, A™) 1M,
r
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